Formaldehyde Free Wood-Based Composites Produced Through a Reactive Extrusion Process

Laurent Matuana

Issues Concerning Wood Composites

- Wood composite plants emit hazardous air pollutants (HAPs) to the environment.
- Formaldehyde is released over time from glued products.
- Public concerns about these issues cause new regulations to be proposed.

Recent Regulations

- US EPA enacted new rules limiting emissions of HAPs from composite wood manufacturing facilities.
- This is likely to spur new research on alternative adhesives.

Alternatives to Synthetic Adhesives

Environmentally friendly wood adhesives

- Low formaldehyde-to-urea molar ratio adhesives
- Adhesives based on natural products
- Additives to reduce formaldehyde release
- Binderless fiberboard
- Some alternatives have not been commercialized because of cost or property drawbacks.

Wood Modification

- Modification of wood particles with anhydride compounds for wood-plastic or composite applications has been demonstrated.
- Most prior approaches to modify wood particles used solvent processes.
- Solvents such as DMF, xylene, etc. are harmful to workers and environment.
- Solvent processes are inefficient, costly and not industrially viable.

Hypothesis

 Maleated polyolefins will react with wood particles in a solvent-free reactive extrusion process.

Hypothesis (cont'd)

 Modified wood particles will bond together to form formaldehyde-free panels with no added adhesive.

 Use a reactive extrusion process to produce a formaldehyde-free binding system for wood composite products.

Requirements to Achieve Objective

- Modify wood particles in reactive extrusion;
- Characterize surface composition via spectroscopic and titration techniques;
- Manufacture wood composite panels and evaluate properties;
- Comparison with standards.

Part 1

Modification of wood particles in a reactive extrusion process and surface characterization

Research Scheme - Part 1

Material Composition

Ingredients	% Total in composite
Maple particles ¹	94 - 79
Maleated PE, PP	5 - 20
Hydrated zinc acetate	1%

¹maple of 125 micron size

Extrusion Processing Conditions

All zones maintained at a constant temperature for each test.

Surface Characterization of Modified Wood Particles

- Modified wood particles were Soxhlet extracted with xylene to remove unreacted coupling agent;
- Particles were oven dried and analyzed by FTIR and XPS.

FTIR Results

Grafting Index (GI_x)

$$GI_{X} = \frac{A_{X (Modified)}}{A_{X (Un \mod ified)}}$$

 A_X : integrated area of the peak X: peak at 1740 cm⁻¹ or 2900 cm⁻¹

XPS and Hydroxyl Index (HI)

	O/C	Analysis of C _{1s} peaks (%)				ОН	
Materials	atomic ratios		C1	C2	C3	C4	index (HI)
Unmodified wood particles	0.47		39.75	51.20	8.46	0.58	1.00
Pure MAPE	0.11		87.13	7.71	5.16	0.00	0.15
Wood modified with 15% MAPE	0.07		92.80	5.29	1.91	0.00	0.10
Wood modified with 20% MAPE	0.03		95.08	4.34	0.58	0.00	0.08

$$HI = \frac{C2_{(\text{mod ified})}}{C2_{(un \text{ mod ified})}}$$

Modification Scheme

Part 1 - Conclusions

- Maleated polyolefins were grafted to maple particles in a reactive extrusion process;
- Surface characterization data verified the reaction between the wood particles and maleated polyolefins.

Part 2

Panel manufacture and property evaluation

Particle-Particle Bonding Scheme

Research Scheme - Part 2

Materials

- □ Wood (American Wood Fibers)
 - Hardwood maple, 425 microns (40 mesh size)
- □ Maleated polyolefins (Eastman Chemical Co.)
 - PP-based (MAPP or G-3003 and G-3015)
- □ Zinc acetate catalyst (Baker Analytical Reagents)
- Batch makeup
 - 79:20:1 weight ratio wood:binding agent:catalyst

Panel Manufacture

Dry blending at room temperature for 10 min. Reactive extrusion (160°C, 60 rpm)

Hot press (193°C, 7 min, 8 Mpa)

Raw Materials and Panel Samples

Property Evaluation

Density

- Mechanical property tests ASTM D1037.
 - MOR, MOE
 - Internal bond (IB) strength
 - Screw holding capacity
- Property values compared with standard ANSI A208.1 (Particleboard).
- A two-sample t-test with $\alpha = 0.05$ level of significance.

Bending Properties

Particleboard of		ANSI (Grades		Experimental	Average	
(640-800 kg/m ³)	M-1 M-S M-2 M-3	M-3	Values	(kg/m ³)			
MOR (MPa)	11.0	12.5	14.5	16.5	23.00 <u>+</u> 4.7	775 ± 8	
MOE (MPa)	1725	1900	2250	2750	2875 <u>+</u> 347	11 <u>5 +</u> 0	

From Standard ANSI A208.1-1999 Particleboard

IB Strength and Screw Holding Capacity

Panel Types	Properties			
	IB Stregth(MPa))	Screw holding (N)		
Medium density grades (Standard ANSI A208.1)	0.40 – 0.55	900 - 1100		
MAPP-panel	1.50	1580		

- Panels were formed from modified wood particles produced through reactive extrusion;
- Composites contained no formaldehyde-based adhesives;
- Mechanical properties meet or exceed standard requirements.

Acknowledgements

- USDA-CSREES Grant Advanced Technology Applications to Eastern Hardwood Utilization;
- McIntire-Stennis Cooperative Forestry Research Program;
- Dr. Karana Carlborn.

- 1. L.M. Matuana and K. Carlborn, "Process for the Preparation of Maleated Polyolefin Modified Wood Particles in Composites and Products," US Patent # **7,605,197** (Issued on October 20, 2009).
- K. Carlborn and L.M. Matuana, "Modeling and Optimization of Formaldehyde-Free Wood-Based Composites Using a Box-Behnken Design," *Polymer Composites*, 27 (5): 497-503 (2006).
- 3. K. Carlborn and L.M. Matuana, "Influence of Processing Conditions and Material Compositions on the Performance of Formaldehyde-Free Wood-Based Composites," *Polymer Composites*, **27** (6): 599-607 (2006).
- 4. K. Carlborn and L.M. Matuana, "Functionalization of Wood Particles Through a Reactive Extrusion Process," *Journal of Applied Polymer Science*, **101** (5): 3131-3142 (2006).
- K. Carlborn and L.M. Matuana, "Composite Materials Manufactured From Wood Particles Modified Through a Reactive Extrusion Process", *Polymer Composites*, 26 (4): 534-541 (2005).