PROS AND CONS OF CURRENT AND FUTURE WOOD PRESERVATIVES

M.H. Freeman, C.R. McIntyre and H. M. Barnes

Wood Preservatives

- Creosote (1831)
- Cu naphthenate (1899)
- ACA, ACC, CCA, FCP, PENTA ('30s & '40s)
- ACZA, Borates ('80s)
- ACQ, CA ('90s)
- CuNap-W, PXTS, CX-A ('00s)
- New ('10s)

What about today?

Residential vs.
 Industrial

• Processes

Preservatives

<u>Residential</u> vs. Industrial

- Outdoor & Indoor exposures
 - Waterborne (95% = CCA)
 - Label Change in '04
 - Public perception vs science
- SYP =
 - 70% of all treated
 - 86% of lumber & timbers
 - 44% of production is treated [7.63 Bbfm]

Residential vs. <u>Industrial</u>

- Mostly exterior exposure
- The big 3—creosote, penta, CCA/ACZA
- Restrictions threatened

Residential CCA Replacements

- Copper-organic systems
 - Ammoniacal copper quat (ACQ)
 - Copper Azole (CA)
 - Copper Xyligen
 (CX)
- Borates (non-ground contact)

Background

- CCA introduced in 1933
- Solid science behind CCA & its safety known for decades
- Faced opposition for decades
- Recent headlines: arsenic exposure
- Proposed state legislation banning CCA
- Class-action lawsuits
- Effect of negative publicity

Leading wood preservative mfg.'s amend CCA registrations with EPA leading to voluntary withdrawal of chromated copper arsenate (CCA)

- Feb. 12, 2002, leading wood preservative mfg.'s entered into agreement with EPA
- Withdrawal of CCA from <u>residential</u> applications only

•Where are we now?

Waterborne Wood Preservatives [AWPA Book of Standards P5]

- CCA
- Ammoniacal Copper Quat [ACQ]
- Copper Azole [CBA-A and CA-B]
- Copper Xyligen [CX-A]
- Borates [SBX]
- ACZA
- Others
 - Cu bis(dimethyldithiocarbamate) [CDDC]
 - DDAC
 - Copper bis-(N-cyclohexyldiazeniumdioxy) (Cu-HDO or Cu Xyligen)

Oil Systems

- Creosote [P1/P13, P2, P3, P4] Ban in ME and possible in other states?
- Rereg Elig Doc to be issued 1 August
 No butt or thermal treatment
 No remedial treatment

Carrier solvents [P9]

Oilborne Systems [P8] Pentachlorophenol

Restrictions on butt, thermal, remedial treatments

Favored because it is organic

•????

Copper naphthenate ·low mammalian toxicity ·not as copper rich

low leaching [≈ 4 ppm]

Oxine copper (*bis* Copper-8-quinolinolate) •FDA food contact approved •Ni could be a problem

Chlorpyrifos [CPF] • Insect protection only

Isothiazolinone

Usually added as a moldicide

IPBC

Millwork

Chlorothalonil

- Good efficacy but solubility problems
- Used with CPF

Inorganic Systems

- Borates
- Uncomplexed Copper Systems
 - ACQ
 - CA/CBA
- Complexed Metal-based Systems
 - CuHDO/CX
 - *C*u8
 - CuN
 - ZnN
 - CDDC
 - TBTO

Atomíc Number: 50 Atomíc Mass: 118.71 B Boron Atomic Number: 5 Atomic Mass: 10.81

Organic Biocides/Preservatives

- Azoles •
 - Cyproconazole
 - Propiconazole
 - Tebuconazole
- Quaternary Ammonium Compounds
 - DDAC
 - ABAC
 - BAC
 - ADBAC
- IPBC •
- Atomic Mass: 35.45 Synthetic Pyrethroids
 - Permethrin
 - Bifenthrin
 - Cypermethrin
 - Cyfluthrin
 - Deltamethrin •

Chlorine

•

mic Number: 17

- **Organic Agrochemicals**
 - TCMTB
 - Chlorothalonil
 - Dichlofluanid
 - Isothiazolone
 - Fipronil
 - Imidachloprid
 - Methylene bis-thiocyanate

- Oligomeric Alkylphenol Polysulfide [PXTS]
- Polymeric Betaine [alternating quat, borate ether units]
- **Copper Betaine**

Ammoniacal Copper Quats (ACQ)

- Introduced ~1990 in the U.S.
- Used for 15 years in Europe, Japan, Australia, New Zealand, and Asia.
- Approved for full exposure to above ground, ground contact, and freshwater uses.
- Fixed preservative

- Combines copper (II) and one of the quaternary compounds (quats)
- Usually in CuO:quat ratio of 2:1
- 3 types of ACQ available in North America:
 - ACQ-Type B (Ammoniacal based with Cu and DDAC as quat)
 - ACQ-Type D (Amine based with Cu and DDAC as quat)
 - ACQ-Type C (Alkaline based with Cu and BAC as quat)

Quat Properties

- Low mammalian toxicity
- Relatively inexpensive

- Broad activity against decay fungi and insects
- Excellent stability and leach resistance
- Surfactant-exposed wood wets easier
- Moderate efficacy
- Most often combined with other biocides
- Now mostly used as Carbonate ion instead of Chloride

Copper Azoles: History / Uses

- Copper azole treated wood products used worldwide since 1992.
- Copper azole is approved for full exposure to above ground, ground contact, and freshwater applications
- Fixed Preservative

Azoles

- Triazoles (cyproconazole*, propiconazole, tebuconazole)
- Copper azole with boron (CBA)
 Cu:boric acid:tebuconazole ratio of 49:49:2
- Copper azole without boron (CA)
 Cu:tebuconazole ratio of 96.1:3.9

Azole Properties

- Highly active against wood decay fungi
- Soluble in hydrocarbon solvents
- Good stability and leach resistance
- Expensive, although cost effective
- Little activity against sapstains, molds, and insects/termites
- Usually combined with other fungicides or termiticides

Borates: History

- Recorded use as early as 1913
- Borate treated wood products established in New Zealand in 1950

- Widely used i before U.S.
- Introduced to U.S. 25 years ago.

Types of Borates

- Sodium octaborate, sodium tetraborate, boric acid, sodium pentaborate [SBX]
- Calcium borate
- Zinc borate
- Trimethyl borate

Borates

 Usually formulated as a mixture of borax and boric acid

- Extremely low mammalian toxicity
- Broad range of activity against decay fungi and insects
- Limited to uses with minimal or no leaching exposure

Concerns with 2nd Generation Systems

•

- Cost increase 2-4x
- Disposal
 - Not as forgiving
 - formulating tricky
- Ammoniacal/amine
- Corrosion to treating plants and fasteners
- · Grow mold

Corrosion

 Increased rate by dissolving Zn, further attack Fe at the O₂-wood interface

Leaching of Cu

- > CCA because Cu rich
- Aquatic toxicity causing hard look

Mold, algae growth

N = more growth

Current Processes

- Same basic processes
- Modified full-cell
- Best Management Practices

Where are we going? Concerns & Challenges

- How long will the current 'new' systems be with us?
- What will 3rd generation systems look like?
- Will processing change?
- Competitive materials?

How Long?

- Probably 10 years
- Pressure on heavy metals

 Some European countries are eliminating Cu [Denmark, Norway, Holland]

- Lawyers are salivating
- 'Real vs. Imagined'

Improved 2nd or 3rd Generation Systems

- Organic systems (in Europe now)
 - expensive
 - oilborne
 - limited activity
 - appearance
 - leaching of non-fixed systems
 - New "micronized Sytems"

Polymeric xylenol tetrasulfide

Atomic Number: 16 Atomic Mass: 32.06

 Non-leachable borate systems???

 Aqueous copper naphthenate

Atomic Number: 29 Atomic Mass: 63.55

 Amoxidant, metal chelator, water repellent additives

<u>Cu Xyligen</u>

- Chlorothalonil (revisited)
- CuBorate systems
- <u>Solublized Cu8</u>
 <u>systems</u>
- <u>Acetylated wood</u>
- Polymer/furfurlated wood
- Polymeric Betaine
- Copper Betaine

- Vacsol Azure (teb:prop:imidachlorprid)
- <u>Isothiazolinones</u>
- <u>Nano-particle</u> <u>systems/micronzed</u>
- Non-amine dispersion systems
- Barrier systems

Less will be more

- Niche systems
- Micro-emulsions

Envelope treatments

 Multicomponent systems Maybe shorter service life

CHEMICALS

- Chemo priobia
 - biocide free; heat treatments
 - antagonistic microbes
 - Modification
 - Barrier wraps

Barrier Wraps

Processing Changes

- Gas-phase treatments
- Supercritical CO₂
- Improvements in refractory wood treatment

 Mechanical stressing has been shown to improve treatability

 Vapor boron has been successful with a wide range of composites including plywood, OSB, LVL, MDF

Challenges

- Mold issues
- Formosan termite
- Engineered composites
- Public education

Mold Issues

- Emotional—no scientific proof that *Stachybotrys* caused health problems (CDC)
- "The mold issue has only become a problem" because the public now perceives it as a hearth threat and . .
 - attorneys are bringing the issue before juries to seek large judgments."
- Cure the moisture problem!

Formosan Termite

- In affected areas, high demand for treated wood
- \$2+ billion problem

 Borate-treated lumber would seem to offer a solution

C. formosanus known infestations and projected northern migration

Engineered Wood Composites

- Wave of the future
- Increased durability essential
- Addition questions
- Compatibility
- ZnB (7+), Cu (1) used now

<u>Current research is looking at:</u>

- Composite durability, modeling
- Addition methods
- New preservatives
- New products such as Steam Pressed Scrim Lumber with enhanced properties

Public Education

- Perceive health risk
- Unfamiliar with CIS

- Long-term exposure
- Technology transfer

What About the Future?

- Stabilizing wood is a continuing goal
- Threats from substitutes are real
- Systems targeted to a specific end use
- Lower retentions = less environmental impact
- Composites
- Better education

Conserve the forests by preserving the wood

